1. 拉格朗日求極值怎么解
對(duì)于無(wú)約束條件的函數(shù)求極值,主要利用導(dǎo)數(shù)求解法
例如求解函數(shù)f(x,y)=x3-4x2+2xy-y2+1的極值。步驟如下:
(1)求出f(x,y)的一階偏導(dǎo)函數(shù)f’x(x,y),f’y(x,y)。
f’x(x,y) = 3x2-8x+2y
f’y(x,y) = 2x-2y
(2)令f’x(x,y)=0,f’y(x,y)=0,解方程組。
3x2-8x+2y = 0
2x-2y = 0
得到解為(0,0),(2,2)。這兩個(gè)解是f(x,y)的極值點(diǎn)。
2. 拉格朗日 求極值
這里用的是導(dǎo)數(shù)的定義,不是拉格朗日中值定理,雖然有點(diǎn)象,但其本質(zhì)是不一樣的。當(dāng)然,拉格拉日中值定理只要原函數(shù)在開(kāi)區(qū)間內(nèi)可導(dǎo),在閉區(qū)間內(nèi)連續(xù)就可以了,沒(méi)有要求導(dǎo)函數(shù)一定要連續(xù)
3. 拉格朗日不等式求極值
在數(shù)學(xué)最優(yōu)化問(wèn)題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問(wèn)題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問(wèn)題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線(xiàn)性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
4. 拉格朗日定理求極值
求極限常用等價(jià)無(wú)窮小替代、洛必達(dá)法則、泰勒公式等方法,有時(shí)候等價(jià)無(wú)窮小不能用,洛必達(dá)法則過(guò)于繁瑣,泰勒公式法雖然強(qiáng)大但是相對(duì)麻煩。對(duì)有一些形式,使用拉格朗日中值定理非常便捷。下面舉兩個(gè)個(gè)例子:
這種形式的式子,很明顯直接使用等價(jià)無(wú)窮小是不行的,洛必達(dá)法則又麻煩至極,泰勒公式做起來(lái)也不輕松。
我們發(fā)現(xiàn)上述式子有這樣的特點(diǎn):右側(cè)減法式子里,兩項(xiàng)的形式都非常類(lèi)似,并且隨著極限的趨向,兩項(xiàng)越來(lái)越接近。這時(shí)候我們可以使用拉格朗日中值定理處理這個(gè)減法式子。
于是上述式子就可以變成(恒等變換):
這個(gè)時(shí)候,隨著x的增大,可以發(fā)現(xiàn),拉格朗日中值定理作用的區(qū)間越來(lái)越小,最終可以確定
然后接下來(lái)就非常好辦了
上面的式子有這樣的共性:1.存在兩項(xiàng)相減因式且形式相同;2.隨著x的變化,因式的兩項(xiàng)越來(lái)越接近(
所在區(qū)間變小)
5. 拉格朗日乘數(shù)求極值
判斷是極大值還是極小值點(diǎn),一個(gè)初步的方法是依靠經(jīng)驗(yàn)和對(duì)問(wèn)題的認(rèn)識(shí)。當(dāng)不能作出有效判斷時(shí),可以求取函數(shù)的二階導(dǎo)數(shù)進(jìn)行判斷,其實(shí)一個(gè)簡(jiǎn)單的方法是比較該極值點(diǎn)的函數(shù)值與相鄰點(diǎn)的函數(shù)來(lái)作出判斷。
至于存在不能化為無(wú)條件極值的問(wèn)題,一般是先不管約束條件建立求解極值點(diǎn)的方程,然后再限制在約束條件下求出最后解答,具體的過(guò)程,建議參看變分原理等數(shù)學(xué)或力學(xué)書(shū)籍,如《計(jì)算動(dòng)力學(xué)》中就有提到,不過(guò)這本書(shū)不是純粹的數(shù)學(xué)推演。
6. 拉格朗日中值定理求極值的方法
1.求函數(shù)的定義域;
2.求函數(shù)的導(dǎo)數(shù);
3.解不等式導(dǎo)數(shù)大于0,導(dǎo)數(shù)小于0的解集;
4.根據(jù)導(dǎo)數(shù)大于0以及導(dǎo)數(shù)小于0的解集,得到這個(gè)函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;
5.根據(jù)函數(shù)的單調(diào)性判斷函數(shù)的極值點(diǎn)有哪些,是極大值還是極小值,先減后增是極小值,先增后減是極大值;
6.分別代入每個(gè)極值點(diǎn),求函數(shù)的所有極值,如果只有極小值,答案中一定注明“無(wú)極大值”,只有極大值也是如此。
7. 拉格朗日法求極值快速求解
拉格朗日乘數(shù)法是多元微分學(xué)中用來(lái)求函數(shù)z=f(x,y)在滿(mǎn)足g(x,y)=0條件下的極值問(wèn)題的方法:通過(guò)設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱(chēng)為拉格朗日乘數(shù),并求F(x,y)的極值點(diǎn)求得條件極值的方法